Textdoc
Zipdoc
Writeurl
Loading…
Verify the following solution very carefully and thoroughly: _______________________ The mathematical solution in the image is as follows: ```latex text{The following is a solution in large steps.} text{First, let's integrate by parts:} I = int_{0}^{frac{pi}{2}} left(x^2 csc^2(x) - frac{pi^2}{4} ight) tan(x) ln(cos(x)) , dx = int_{0}^{frac{pi}{2}} left(x csc^2(x) - x^2 cot(x) csc^2(x) ight) ln^2(cos(x)) , dx. text{Using the change of variables } x mapsto arctan(x) text{ and expanding yields} I = frac{1}{4} underbrace{int_{0}^{infty} frac{arctan(x) ln^2(1+x^2)}{x^2} , dx}_{I_1} - frac{1}{4} underbrace{int_{0}^{infty} frac{arctan^2(x) ln^2(1+x^2)}{x^3} , dx}_{I_2}. text{Now, for the resulting integrals, we will exploit the key identity:} ln(1+iz) = frac{1}{2} ln(1+z^2) + i arctan(z), quad z in mathbb{C} land z eq pm i. text{So, this means that} I_1 = int_{0}^{infty} frac{arctan(x) ln^2(1+x^2)}{x^2} , dx = frac{4}{3} Im left{ int_{0}^{infty} frac{ln^3(1+ix)}{x^2} , dx ight} + frac{4}{3} int_{0}^{infty} frac{arctan^3(x)}{x^2} , dx = 8 zeta(3) + frac{4}{3} int_{0}^{infty} frac{arctan^3(x)}{x^2} , dx. text{Furthermore, we have} I_2 = int_{0}^{infty} frac{arctan^2(x) ln^2(1+x^2)}{x^3} , dx = - frac{2}{3} e left{ int_{0}^{infty} frac{ln^4(1+ix)}{x^3} , dx ight} + frac{1}{24} int_{0}^{infty} frac{ln^4(1+x^2)}{x^3} , dx + frac{2}{3} int_{0}^{infty} frac{arctan^4(x)}{x^3} , dx = - frac{2}{3} left( frac{2 pi^4}{15} - 12 zeta(3) ight) + frac{1}{24} left( frac{2 pi^4}{15} ight) + frac{4}{3} int_{0}^{infty} left( frac{1}{x^2} - frac{1}{1+x^2} ight) arctan^3(x) , dx = - frac{5 pi^4}{48} + 8 zeta(3) + frac{4}{3} int_{0}^{infty} frac{arctan^3(x)}{x^2} , dx. text{This means that} I_1 - I_2 = 8 zeta(3) + frac{4}{3} int_{0}^{infty} frac{arctan^3(x)}{x^2} , dx - left( - frac{5 pi^4}{48} + 8 zeta(3) + frac{4}{3} int_{0}^{infty} frac{arctan^3(x)}{x^2} , dx ight) = frac{5 pi^4}{48}, text{and thus} I = frac{1}{4} (I_1 - I_2) = frac{1}{4} left( frac{5 pi^4}{48} ight) = frac{5 pi^4}{192}. ```